

RADIOACTIVITY SURVEY DATA in Japan

Part 2 = Dietary Materials =

NUMBER 131 January 2002

National Institute of Radiological Sciences Chiba, Japan

Radioactivity Survey Data in Japan Number 131

August 2001 part 2 = Dietary Materials =

Contents

		Fage	
En		Ital and Dietary Materials	
		Japan Chemical Analysis Center)	
1.	Collecti	on and pretreatment of samples ······	
2.		ation of samples for analysis ·····	
3.		tion of Strontium-90 and Cesium-137 ······	
4.	Determ	ination of Stable Strontium, Calcium and Potassium	
5.	Countin		
6.	Results		_
	(1)	Strontium-90 and Cesium-137 in Total Diet ·····	
	(2)	Strontium-90 and Cesium-137 in Rice	9
		(producing districts)	
	(3)-1	Strontium-90 and Cesium-137 in Milk	10
		(producing districts for domestic program)	
	-2	Strontium-90 and Cesium-137 in Milk	11
		(producing districts for WHO program)	
	-3	Strontium-90 and Cesium-137 in Milk	12
		(consuming districts)	
	-4	Strontium-90 and Cesium-137 in Milk	14
		(powdered milk)	
	(4)-1		15
		(producing districts)	
	-2	Strontium-90 and Cesium-137 in Vegetables ·····	16
		(consuming districts)	
	(5)	Strontium-90 and Cesium-137 in Tea (Japanese Tea)	17
	(6)	Strontium-90 and Cesium-137 in Sea Fish	
	(7)	Strontium-90 and Cesium-137 in Freshwater Fish ······	
	(8)	Strontium-90 and Cesium-137 in Shellfish	
	(9)	Strontium-90 and Cesium-137 in Seaweeds	25

Editted by National Institute of Radiological Sciences, under the supervision of Ministry of Education, Culture, Sports, Science and Technology of Japanese Government.

Environmental and Dietary Materials'

(Japan Chemical Analysis Center)

1. Collection and pretreatment of samples

(1) Rain and dry fallout

Rain and dry fallout was collected monthly on a sampling tray, approximately 5000cm² in area, which was filled with water to a depth of 1 cm at the beginning of every month.

Strontium and cesium carrier solutions were added after the sample was filtered. The tray was washed with $5 \, \varrho$ of distilled water and the washing was combined to the filtrate.

The sample was passed through a cation exchange column (500m₂ of Dowex 50W X8, 50~ 100 mesh. Na form) at a rate flow of 80m₂/min.

(2) Airborne dust

Airborne dust was collected by an electrostatic precipitator or a filter air sampler for every three-months at a rate of more than 3000m³ per month.

The sampling was done 1 to 1.5 meters above the ground.

(3) Service water and freshwater

Service water, $100\,\text{g}$ each, was collected at the intake of the water-treatment plant and at the tap after water was left running for five minutes. Strontium and cesium carriers were added to the filtered water sample. The subsequent process was the same as that described in the section (1). Freshwater was treated in the same way as the service water.

(4) Soil

Soil was collected from the location in the spacious and flat area without past surface disturbance caused by dust storms, inflow and out flow due to precipitation, etc.. Any places located under trees in a forest, in a stony area or inside of river banks were avoided. Soil was taken from two layers of different depths, 0-5cm and 5-20cm. The soil lumps were crushed by hands and dried in a drying oven regulated 105°C. The soil was then passed through a 2mm sieve to remove plant roots and pebbles.

(5) Sea water

Sea water was collected at the fixed stations

where the effect of terrestrial fresh water from rivers was expected to be negligibly small. A special consideration was also given to weather conditions.

The sampling was carried out when there was no rainfall for the last few days. To prevent contamination, water samples were collected at the bow of a sampling boat just before she stood still by scooping surface water using a polyethylene bucket.

Immediately after the collection, the samples were acidified to a pH lower than 3 by adding concentrated hydrochloric acid in a ratio of $1\,\mathrm{m_2}$ to $1\,\mathrm{g}$ of sea water, and then stored in $20\,\mathrm{g}$ polyethylene containers. The sampling equipments as well as containers were thoroughly rinsed with dilute hydrochloric acid and then with distilled water before use. Two hundred milliliters of sea water was also collected at the same stations for the determination of chlorinity.

(6) Sea sediments

Sediment was collected in the same area as that for the sea water sample, taking the following criteria into account:

- a. The depth of water exceeds 1m at low tide.
- b. No significant sedimental movement is observed in the vicinity of concern.
- c. Mud, silt and fine sand are preferable.

A conventional sediment sampling device was used for collecting the top few centimeters of surface sediment. Approximately 4 kg of the sample in wet weight was spread on a stainless steel dish after removed of the pebbles, shells and other foreign materials, and dried in a drying oven regulated at 105°C.

(7) Total diet

A full one day ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of "total diet".

The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transferred to a porcelain dish and then ashed at 450°C in an electric muffle furnace.

(8) Rice

Polished rice was collected in producing districts at the harvest and in consuming areas when new crops were first put on sale. The sample was carbonized and ashed in a porcelain dish.

^{*} Samples were sent to the Center from 46 contracted prefectures.

(9) Milk

Raw milk was collected in producing districts and commercial milk was purchased in consuming districts. Milk in a stainless steel pan or a porcelain dish was evaporated to dryness followed by carbonization and ashing.

(10) Vegetables

Spinach and Japanese radish were selected as the representatives for left vegetables and for nonstarch roots, respectively. After removing soil, the edible part of vegetable sample was dried and carbonized in a stainless steel pan or a porcelain dish.

(11) Tea

Five hundred grams of manufactured green tea was collected, carbonized and ashed in a stainless steel pan or a porcelain dish.

(12) Fish, shellfish and seaweeds

a. Sea fish and freshwater fish

Fish was rinsed with water and blotted with a filter paper. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. Each sample was weighed and placed in a stainless steel pan or a porcelain dish. After carbonized, the sample was ashed in an electric muffle furnace.

b. Shellfish

Approximately 4kg of shellfish including the shells was collected or purchased. After removing the shells, it was treated in the same way as that for the sea fish.

c. Seaweeds

Edible seaweeds were collected and rinsed with water to remove sand and other adhering matters on the surface. These were removed of excess water, weighed dried and ashed.

Table 1 shows details of sample collection.

Table 1 Details of sample collection

Sample	Frequency of sampling	Quantity of sample
=Environmental materials=		
(1) Rain and dry fallout		
 For domestic program 	monthly	
For WHO program	monthly	
(2) Airborne dust	quarterly	>3000 m³/month
(3) Service water and freshwater		
 Service water (source water) 	semiyearly	100 Q
Service water (tap water)	semiyearly	100 <i>Q</i>
Freshwater	yearly (fishing season)	100 Q
(4) Soil		
1. 0∼ 5 cm	yearly	4 kg
2. 5∼ 20cm	yearly	4 kg
(5) Sea water	yearly	40 Q
(6) Sea sediments	yearly	4 kg
=Dietary materials=	•	•
(7) Total diet	semiyearly	daily amount for 5 person
(8) Rice		
1. Producing districts	yearly (harvesting season)	5 kg (polished rice)
2. Consuming districts	yearly (harvesting season)	5 kg (polished rice)
(9) Milk	· · ·	
 Producing districts for 	quarterly (February, May, August and	3 <i>Q</i>
WHO program	November)	
Producing districts for domestic program	semiyearly (February and August)	3 Q

Sample	Frequency of sampling	Quantity of sample				
3. Consuming districts	semiyearly (February and August)	3 Q				
4. Powdered milk	semiyearly (April and October)	2∼ 3 kg				
(10) Vegetables	, ,	3				
Producing districts	yearly (harvesting season)	4 kg				
2. Consuming districts	yearly (harvesting season)	4 kg				
(11) Tea	yearly (the first harvesting season)	500g (manufactured tea)				
(12) Fish, shellfish and seaweeds	•					
1. Sea fish	yearly (fishing season)	4 ka				
2. Freshwater fish	yearly (fishing season)	4 kg				
3. Shellfish	yearly (fishing season)	4 kg				
4. Seaweeds	yearly (fishing season)	2~ 3 kg				

2. Preparation of samples for analysis

(1) Rain, service water and freshwater

Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The residue of rain sample on the filter paper was ashed in an electric muffle furnace and the ash was dissolved in hydrochloric acid. The insoluble part was filtered and washed. The filtrate and the washings were combined to the previous eluate and used for radiochemical analysis.

(2) Soil and Sea sediment

Dried soil was crushed to smaller ones than 0.2 5mm in size by a crusher. The sieved sample was ashed in an electric muffle furnace regulated at 450 °C. The sample was then heated with hydrochloric acid, strontium and cesium carrier solutions and the mixture was heated. The insoluble constituent was filtered off and washed with water.

The dried sample was crushed to smaller ones than 0.25mm by a crushing machine. The further preparation of the sample was the same as that described in the section 2-(2).

(3) Rice

The ashed sample was pulverized with a porcelain mortar and passed through a 0.35mm sieve. The sieved sample to which both strontium and cesium carriers were added, was digested with nitric acid by heating. After the sample was heated again with nitric acid to dryness, strontium and cesium were extracted with hydrochloric acid and water. The insoluble constituent was filtered and washed. The filtrate and washings were combined for subsequent radiochemical analysis.

(4) Airborne dust, diet, milk, vegetables, fish and shellfish, seaweeds, tea and others These ashed samples were treated with the same procedure as that described in the section 2-(4).

3. Separation of strontium-90 and cesium-137

(1) Strontium-90

Sample solutions, prepared as in the foregoing sections 2-(1) through 2-(4), were neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination.

The carbonates were dissolved in hydrochloric acid and strontium and calcium were precipitated as oxalates. The precipitate was dissolved in nitric acid and strontium was separated from calcium by successive fuming nitric acid separation. scavenge was made after addition of ferric iron carrier followed by barium chromate separation after addition of barium carrier to remove radium, its daughters and lead. Strontium was recovered as carbonate, and the precipitate was dried and weighed to determine strontium recovery. strontium carbonate was dissolved in hydrochloric acid and iron carrier was added. The solution was allowed to stand for two weeks for strontium-90 and yttrium-90 to attain equilibrium. Yttrium-90 was coprecipitated with ferric hydroxide and the precipitate was filtered off, washed and counted.

(2) Cesium-137

The supernatant separated from the strontium fraction was acidified with hydrochloric acid. While stirring, cesium was adsorbed on the ammonium molybdophosphate added.

After filtered off and washed with hydrochloric acid the precipitate was dissolved in 2.5N sodium hydroxide solution. The solution was adjusted to pH 8.2 with hydrochloric acid and allowed to cool.

Resultant molybdenum hydroxide which separated

out in the solution. was filtered off and washed with water. EDTA was added to the filtrate and washings. Cesium and rubidium were adsorbed on a cation exchange column and cesium was separated from rubidium by eluting with hydrochloric acid.

The eluate was evaporated to dryness and was dissolved. The solution was filtered.

Chloroplatinic acid was added to precipitate cesium. The precipitate was filtered onto a tared paper using a demountable filter and washed with water and then ethanol. After drying, the chemical yield of cesium was determined by weighing the precipitate. Cesium-137 radioactivity was measured for this precipitate.

4. Determination of stable strontium, calcium and potassium

A weighed amount of soil or sea sediment was heated in a electric muffle furnace at 450°C and then treated with hydrochloric acid for extraction. A weighed aliquot of ashed samples of total diet, vegetables, milk, fish, shellfish or seaweeds was

digested with hydrofluoric acid and nitric acid.

The extract was made up to an appropriate volume with dilute hydrochloric acid. The sample solution was analyzed for calcium by titration with standard potassium permanganate solution after separating calcium as oxalate. Atomic absorption spectroscopy was applied when appropriate. Stable strontium and potassium were determined by atomic absorption and flame emission spectrometry, respectively.

Counting

After the radiochemical separation the mounted precipitates were counted for activity using low background beta counters normally for 60 to 90min. Net sample counting rates were corrected for counter efficiency, recovery, self-absorption and decay to obtain the content of strontium-90 and cesium-137per sample aliquot. From the results, concentrations of these nuclides in the original samples were calculated.

6. Results

(1) Strontium-90 and Cesium-137 in Total Diet (form Apr. 1999 to Sep. 1999)

-continued from No. 129 for this publication-

Table (1) : Strontium-90 and Cesium-137 in Total Diet

Location	Ash	Ca	K			908	ir		137Cs					
(8	g/p/d)	(mg/p/d)	(mg/p/d)	(Bq/p	o/d)	(1	Bq/g Ca)	(E	3q/p	/d)	(Bo	ı/g	K)
May, 1999		······································												
lwanai-machi, HOKKA1DO	12. 4	528	1850	0. 059	±	0.0093	0. 11	± 0.018	0. 041	±	0. 0067	0. 022	±	0. 0036
Yamagata, YAMAGATA	12. 6	348	1570	0. 061	±	0. 01	0. 18	± 0.029	0. 012	±	0. 0052	0. 0078	±	0. 0033
Higashine, YAMAGATA	15. 8	344	1630	0.064	±	0. 01	0. 19	± 0.029	0. 031	±	0. 0059	0. 019	±	0.0036
Otsu, SHIGA	16. 1	777	2430	0. 057	±	0.0092	0.074	± 0.012	0. 031	±	0. 0063	0. 013	±	0.0026
lmazu-machi, SHIGA	15. 3	673	2150	0. 058	±	0.0098	0. 086	± 0.015	0. 048	±	0. 0088	0. 022	±	0. 0041
Jun, 1999														
Sapporo, HOKKA I DO	17. 2	465	2220	0. 043	±	0.0086	0. 092	± 0.019	0. 026	±	0. 0061	0.012	±	0. 0028
Aomori, AOMORI	21. 1	673	2470	0. 066	±	0. 011	0. 097	± 0.017	0. 06	±	0. 0094	0. 024	±	0.0038
Ajigasawa-machi, AOMORI	16. 7	1070	1820	0. 079	±	0.012	0. 073	± 0.011	0. 032	±	0.0083	0. 017	±	0. 0045
Morioka, IWATE	13. 9	540	1800	0. 04	±	0.0099	0. 075	± 0.018	0.043	±	0. 0072	0. 024	±	0.004
lwaizumi-machi, IWATE	13. 2	510	1960	0. 044	±	0.0094	0. 086	± 0.018	0. 099	±	0.0094	0. 051	±	0.0048
Fukushima, FUKUSHIMA	14. 3	329	1560	0. 023	±	0. 0072	0. 071	± 0.022	0. 032	±	0.006	0. 02	±	0.0038
Okuma-machi, FUKUSHIMA	10. 8	465	1620	0. 051	±	0.0083	0.11	± 0.018	0. 025	±	0.0055	0.016	±	0.0034
Mito, IBARAKI	20. 4	603	3090	0. 059	±	0.0093	0.098	± 0.015	0.098	±	0.0096	0. 032	±	0.0031
Tokai-mura, IBARAKI	15. 4	627	1950	0. 029	±	0. 0077	0.046	± 0.012	0. 04	±	0.0063	0. 021	±	0.0032
Utsunomiya, TOCHIGI	12	394	1780	0. 044	±	0. 0086	0. 11	± 0.022	0. 02	±	0. 0053	0. 011	±	0.003
minamikawachi-machi, TOCHIGI		630	1820	0. 042	±	0. 0089	0. 067	± 0.014	0. 063	±	0. 0078	0. 035	±	0.0043
Maebashi, GUNMA	15. 7	471	2070	0. 046	±	0. 0098	0. 098	± 0.021	0. 058	±	0. 0079	0. 028	±	0. 0038
Nakanojo-machi, GUNMA	15. 4	554	2000	0. 056	±	0. 0096	0. 1	± 0.017	0. 046	±	0. 007	0. 023	±	0. 0035
Urawa, SAITAMA	20. 5	613	2430	0. 072	±	0. 011	0. 12	± 0.018	0. 039	±	0. 007	0. 016	_ _	0. 0029
Kumagaya, SA1TAMA	13. 3	407	1470	0. 018	±	0. 0071	0. 044	± 0.017	0. 012	±	0. 0047	0. 0083	±	0. 0032
Chiba, CHIBA	13. 3 16. 5	467 464	2150	0. 036	±	0. 0071	0. 078		0. 012	±	0. 0063	0. 013	±	0. 0032

Location	Ash	Ca	K		908	r	137Cs					
	(g/p/d)	(mg/p/d)	(mg/p/d)	(Ва	_J /p/d)	(Bq/g Ca)	(E	Bq/p/d)	(Bo	q/g K)		
Chikura-machi, CHIBA	18. 5	546	2610	0. 04 =	± 0.0082	0.073 ± 0.015	0. 035	± 0.0067	0. 013	± 0.0026		
Shinjuku, TOKYO	9. 1	298	957	0. 035	± 0.0086	0. 12 ± 0. 029	0. 018	± 0.0052	0. 018	± 0.0054		
Hachijo-machi, TOKYO	12	611	1550	0. 034	± 0.0083	0.055 ± 0.014	0. 03	± 0.0063	0. 02	± 0.004		
Nishikawa-machi, NIIGAT	21.3	678	2590	0. 046	± 0.0094	0.068 ± 0.014	0. 055	± 0.008	0. 021	± 0.0031		
Kashiwazaki, NIIGATA	19. 5	537	2410	0. 052 -	± 0.0098	0.097 ± 0.018	0. 036	± 0.0069	0. 015	± 0.0028		
Toyama, TOYAMA	14. 9	407	2310	0. 036	± 0.0091	0.088 ± 0.022	0. 017	± 0.0055	0. 0075	± 0.0024		
Shinminato, TOYAMA	13	503	1740	0. 051	± 0.01	0.1 ± 0.02	0. 026	± 0.0062	0. 015	± 0.0035		
Kanazawa, ISHIKAWA	17. 7	526	1890	0. 029	± 0.0067	0.056 ± 0.013	0. 02	± 0.0051	0. 01	± 0.0027		
Torigoe-mura, ISHIKAWA	18. 9	839	2640	0. 057	± 0.0087	0.068 ± 0.011	0. 051	± 0.0073	0. 019	± 0.0028		
Kofu, YAMANASHI	13. 5	475	2110	0. 056	± 0.0095	0. 12 ± 0. 02	0. 065	± 0.0082	0. 031	± 0.0039		
Ichinomiya-machi, YAMANASH	11.6	435	1620	0. 04	± 0.0083	0.091 ± 0.019	0. 03	± 0.006	0. 018	± 0.0037		
Nagano, NAGANO	15. 4	480	1790	0. 03	± 0.0086	0.063 ± 0.018	0. 068	± 0.0081	0. 038	± 0.0045		
Toyono-machi, NAGANO	14. 4	561	1800	0. 027	± 0.0076	0.048 ± 0.014	0. 021	± 0.0056	0. 012	± 0.0031		
Gifu, GIFU	11. 2	481	1560	0. 037	± 0.008	0.077 ± 0.017	0.016	± 0.005	0. 01	± 0.0032		
Takayama, GIFU	9	503	1120	0. 02	± 0.0065	0.041 ± 0.013	0.008	± 0.0043	0. 0071	± 0.0039		
Shizuoka, SHIZUOKA	16. 1	749	2250	0. 035	± 0.0086	0.047 ± 0.011	0.069	± 0.0082	0. 031	± 0.0036		
Hamaoka-machi, SHIZUOKA	13. 5	536	1730	0. 034	± 0.008	0.064 ± 0.015	0. 017	± 0.0046	0.0096	± 0.0027		
Nagoya, AICHI	14. 3	448	2030	0. 038	± 0.0084	0.085 ± 0.019	0. 035	± 0.0067	0. 017	± 0.0033		
Shinshiro, AICHI	13	467	1640	0. 035	± 0.0083	0.075 ± 0.018	0. 02	± 0.0055	0.012	± 0.0034		
Tsu, MIE	16. 9	483	1630	0. 046 -	± 0.0091	0.095 ± 0.019	0. 019	± 0.0054	0. 011	± 0.0033		
Owase, MIE	13. 6	468	1470	0. 055	± 0.0088	0.12 ± 0.019	0. 023	± 0.0054	0. 015	± 0.0037		
Kyoto, KYOTO	13. 4	415	1720	0. 046	± 0.011	0.11 ± 0.025	0. 05	± 0.0076	0. 029	± 0.0044		
Maizuru, KYOTO	13. 1	515	1880	0. 048	± 0.0099	0.093 ± 0.019	0. 013	± 0.0053	0. 0071	± 0.0028		
Osaka, OSAKA	16. 4	712	2020	0. 034	± 0.0078	0.047 ± 0.011	0. 077	± 0.0088	0. 038	± 0.0043		
Izumiotsu, OSAKA	12. 9	372	1820	0. 033	± 0.007	0.089 ± 0.019	0. 048	± 0.0069	0. 026	± 0.0038		
Kakogawa, HY0G0	13. 3	536	1620	0. 045	± 0.0093	0.084 ± 0.017	0. 034	± 0.0066	0. 021	± 0.0041		
Hamasaka-machi, HYOGO	14. 9	708	1730	0. 055	± 0.0093	0.078 ± 0.013	0. 024	± 0.0058	0.014	± 0.0034		
Kashihara, NARA	12. 3	631	1510	0. 029	± 0.008	0.046 ± 0.013	0. 016	± 0.0056	0. 011	± 0.0037		

Location	Ash	Ca	K			908	r		137Cs					
	(g/p/d)	(mg/p/d)	(mg/p/d)	(E	Bq/p	/d)	(I	Sq/g Ca)	(E	3q/p	/d)	(Be	1 /g	K)
Gojo, NARA	13. 1	825	1740	0. 038	±	0. 0087	0. 046	± 0.011	0. 019	±	0. 0055	0. 011	±	0. 0032
Wakayama, WAKAYAMA	13. 2	385	1800	0. 027	±	0. 0075	0. 07	± 0.02	0. 019	±	0. 0071	0. 01	±	0.004
Shingu, WAKAYAMA	11.4	493	1320	0. 021	±	0. 0082	0. 042	± 0.017	0. 023	±	0. 0055	0. 017	±	0. 0042
Tottori, TOTTORI	12. 8	462	1530	0. 021	±	0. 007	0. 046	± 0.015	0. 033	±	0.0061	0. 022	±	0.004
Fukube-mura, TOTTORI	10. 3	354	1640	0. 06	±	0. 01	0. 17	± 0.028	0. 031	±	0.0061	0.019	±	0.003
Okayama, OKAYAMA	18. 2	612	2210	0. 065	±	0. 01	0. 11	± 0.017	0. 041	±	0.0068	0. 018	±	0.003
Kamisaibara-mura, OKAYA	13. 4	523	1660	0. 031	±	0. 0086	0. 06	± 0.016	0.042	±	0.0067	0. 025	±	0.004
Hiroshima, HIROSHIMA	12. 6	473	1700	0. 05	±	0.0089	0. 1	± 0.019	0. 029	±	0.0057	0. 017	±	0.003
Miyoshi, HIROSHIMA	14. 2	663	1420	0. 0079	±	0.0066	0.012	± 0.0099	0. 024	±	0.0057	0. 017	±	0.004
Yamaguchi, YAMAGUCHI	13. 3	473	1660	0.019	±	0.0074	0. 04	± 0.016	0. 02	±	0.0058	0.012	±	0.003
Mine, YAMAGUCHI	16	469	1840	0. 04	±	0.0085	0.086	± 0.018	0. 03	±	0.0061	0. 016	±	0. 003
Tokushima, TOKUSHIMA	16. 3	898	1850	0. 07	±	0. 011	0. 077	± 0.012	0. 035	<u>±</u>	0. 0084	0. 019	±	0.004
Kamiita-machi, TOKUSHIM	15. 2	396	2150	0. 031	±	0.0086	0. 079	± 0.022	0.0098	±	0. 0048	0.0046	±	0. 002
Takamatsu, KAGAWA	17. 4	517	1800	0. 022	±	0. 0078	0.043	± 0.015	0.036	±	0.0068	0. 02	±	0. 003
Marugame, KAGAWA	15. 5	533	1910	0. 041	±	0.0089	0. 077	± 0.017	0.016	±	0. 005	0. 0082	±	0. 002
Matsuyama, EHIME	9. 8	408	1440	0.012	±	0. 0067	0. 029	± 0.017	0. 015	±	0. 005	0. 01	±	0. 003
lkata-machi, EHIME	9. 9	307	1100	0. 025	±	0. 0081	0. 083	± 0.026	0.0026	±	0.0038	0. 0023	±	0. 003
Kochi, KOCHI	15. 4	660	2100	0. 056	±	0. 0092	0. 085	± 0.014	0. 031	±	0. 0059	0. 015	±	0. 002
Saga-machi, KOCHI	12. 8	455	1480	0. 041	±	0.0096	0.09	± 0.021	0. 01	±	0. 0051	0.0069	±	0. 003
Dazaifu, FUKUOKA	14. 2	576	2020	0. 035	±	0. 0077	0. 061	± 0.013	0. 033	±	0.0064	0. 017	±	0. 003
Fukuoka, FUKUOKA	10. 8	343	1200	0. 023	±	0. 0078	0.066	± 0.023	0. 013	±	0. 0051	0. 011	±	0.004
Saga, SAGA	13. 3	717	1370	0. 025	±	0.0087	0. 034	± 0.012	0. 01	±	0.0064	0.0076	±	0. 004
Nagasaki, NAGASAKI	18. 2	499	2320	0. 071	±	0. 012	0. 14	± 0.024	0. 041	±	0.0086	0. 018	±	0.003
Matsuura, NAGASAKI	12. 1	335	1450	0. 033	±	0. 009	0. 1	± 0.027	0. 013	±	0. 0052	0. 0087	±	0. 003
Kumamoto, KUMANOTO	15. 4	646	1930	0. 037	±	0. 0087	0. 058	± 0.013	0. 021	±	0. 0073	0. 011	±	0. 003
Tomiai-machi, KUMAMOTO	14. 3	413	1880	0. 054	±	0. 0095	0. 13	± 0.023	0. 025	±		0.014	±	0. 003
Oita, OITA	12. 4	420	1600	0. 025	±	0.009	0. 059	± 0.021	0. 015	±	0. 0052	0.0096	±	0. 003
Saeki, OITA	13. 9	289	1340	0. 015	±	0. 0069	0. 053	± 0.024	0. 012	±	0. 0047	0. 0093	±	0. 003

Location	Ash	Ca	K			908	r				1	37Cs		
	(g/p/d) $(mg/p/d)$ $(mg/p/d)$	(mg/p/d)	(Bq/p	o/d)	(E	Sq/g Ca)	(E	Bq/p	/d)	(B	q/g	K)	
Miyazaki, MIYAZAKI	10. 9	461	1520	0. 053	±	0. 011	0. 11	± 0.023	0. 019	±	0. 008	0. 013	±	0. 0053
Takachiho-machi, MIYAZA	19. 3	836	2750	0. 047	±	0.0097	0. 056	± 0.012	0. 03	±	0.0069	0. 011	±	0. 0025
Sendai, KAGOSHIMA	11. 2	398	1690	0. 055	±	0.0095	0. 14	± 0.024	0. 028	±	0. 0062	0. 016	±	0. 0037
Okuchi, KAGOSHIMA	16. 5	492	2080	0. 045	±	0. 0091	0. 091	± 0.019	0. 042	±	0. 0072	0. 02	±	0.0035
Jul, 1999														
Ishinomaki, MIYAGI	14. 6	607	1840	0. 023	±	0.008	0. 038	± 0.013	0. 035	±	0. 0066	0. 019	±	0. 0036
Onagawa-machi, MIYAGI	18. 2	466	2130	0. 056	±	0. 01	0. 12	± 0.021	0.044	±	0. 007	0. 021	±	0.0033
Akita, AKITA	11.1	507	1580	0. 033	±	0. 0095	0. 065	± 0.019	0. 054	±	0. 0072	0. 034	±	0. 0046
Yokote, AKITA	12	386	1490	0. 039	±	0. 0081	0. 1	± 0.021	0. 056	±	0. 0073	0. 038	±	0.0049
Yokohama, KANAGAWA	13. 6	364	1450	0. 029	±	0.008	0. 079	± 0.022	0. 025	±	0. 0056	0.017	±	0.0039
Hiratsuka, KANAGAWA	14. 3	630	2490	0. 04	±	0. 0085	0.064	± 0.014	0. 03	±	0. 0065	0.012	±	0.0026
Fukui, FUKU I	17. 6	452	1990	0. 027	±	0.0076	0. 059	± 0.017	0. 018	±	0. 0053	0.009	±	0.0026
Tsuruga, FUKU I	15. 1	643	1940	0.049	±	0.0092	0. 076	± 0.014	0. 045	±	0.0069	0. 023	±	0.0036
Matsue, SHIMANE	19. 8	594	2480	0. 071	±	0. 012	0. 12	± 0.02	0. 033	±	0.0065	0. 013	±	0.0026
Kashima-machi, SHIMANE	13. 8	646	1610	0. 051	±	0.0092	0. 08	± 0.014	0. 022	±	0.006	0. 014	±	0.0037
Karatsu, SAGA	19. 1	1180	1860	0. 041	±	0. 0099	0. 034	± 0.0084	0. 029	±	0. 0074	0. 016	±	0.004
Naha, OKI NAWA	14. 7	700	2470	0. 062	±	0. 0097	0. 089	± 0.014	0. 026	±	0.0063	0. 01	±	0. 0025
Itoman, OKINAWA	17	571	2330	0. 056	±	0. 01	0. 097	± 0.018	0. 04	±	0.0084	0. 017	±	0.0036

(2) Strontium-90 and Cesium-137 in Rice (producing districts) (form Apr. 1999 to Sep. 1999)

Table (2)-1 : Strontium-90 and Cesium-137 in Rice (producing districts)

Location	Component			90)Sr	137Cs					
	(%)	(g/kgwet)	(g/kgwet)	(Bq/kgwet)	(Bq/gCa)	(Bq/kgwet)	(Bq/gK)				
Jul, 1999											
Sadohara-machi, MIYAZAKI	0.603	0. 029	0. 808	0.0045 ± 0.0056	0.16 ± 0.2	0 ± 0.0033	0 ± 0.0041				
Aug, 1999											
Gifu, GIFU	0. 574	0. 044	0. 752	0.014 ± 0.0067	0.32 ± 0.15	0 ± 0.0036	0 ± 0.0048				
Shingu, WAKAYAMA	0. 452	0. 036	0. 701	0.0029 ± 0.004	0.08 ± 0.11	0.0022 ± 0.0051	0.0032 ± 0.0072				
Sep, 1999											
Chiba, CHIBA	0. 508	0. 033	0. 955	0 ± 0.0057	0 ± 0.17	0.0032 ± 0.0037	0.0034 ± 0.0038				
Matsusaka, MIE	0. 709	0. 039	0. 865	0.006 ± 0.006	0. 15 ± 0. 15	0.0081 ± 0.0043	0.0093 ± 0.0049				

(3)-1 Strontium-90 and Cesium-137 in Milk(producing districts for domestic proguram) (form Apr. 1999 to Sep. 1999)

Table (3)-1 : Strontium-90 and Cesium-137 in Milk(producing districts for domestic proguram)

Location	Component				90	Sr		137Cs				
	A sh (%)	Ca (g/kg)	K(g/kg)	(E	Bq/kgwet)	(Bq	/g Ca)	(Bq/kgwet)		(Bq/g K)		
Jul, 1999												
Yamato-machi, SAGA	0. 77	1. 12	1. 47	0. 03	± 0.0076	0. 027	± 0.0068	0. 015	± 0.0044	0.0099	± 0.003	
Aug, 1999												
Aomori, AOMORI	0. 74	1, 11	1. 58	0.064	± 0.011	0. 058	± 0.01	0. 065	± 0.0096	0. 041	± 0.0061	
Takizawa-mura, IWATE	0. 69	1. 98	2. 81	0. 018	± 0.0084	0.0093	± 0.0042	0.064	± 0.0099	0. 023	± 0.0035	
Mito, IBARAKI	0. 73	1. 1	1. 56	0.034	± 0.0091	0. 031	± 0.0082	0.0096	± 0.0049	0.0061	± 0.0031	
Nishinasuno-machi, TOCHIO	GI 0. 78	1. 2	1. 51	0. 038	± 0.0083	0. 032	± 0.0069	0. 037	± 0.0087	0. 024	± 0.0057	
Fujimi-mura, GUNMA	0. 69	1. 72	2. 23	0. 035	± 0.0084	0. 02	± 0.0049	0. 012	± 0.0069	0.0055	± 0.0031	
Yachimata, CHIBA	0. 73	1. 28	1. 7	0. 025	± 0.0078	0. 019	± 0.006	0. 01	± 0.0066	0.006	± 0.0039	
Tonami, TOYAMA	0. 69	1. 04	1. 54	0.036	± 0.0081	0. 034	± 0.0078	0. 038	± 0.0082	0. 025	± 0.0053	
Oshimizu-machi, ISHIKAWA	0. 76	1. 17	1. 53	0. 014	± 0.0059	0. 012	± 0.0051	0. 011	± 0.0044	0. 0073	± 0.0028	
Takane-machi, YAMANASH!	0. 65	1.02	1. 37	0.029	± 0.0072	0. 028	± 0.0071	0	± 0.0035	0	± 0.0026	
Kasamatsu-machi, GIF U	0. 65	1. 01	1. 27	0. 027	± 0.0071	0. 027	± 0.007	0.016	± 0.005	0. 013	± 0.0039	
Ouchiyama-mura,MIE	0. 72	1.09	1. 54	0. 017	± 0.0071	0.016	± 0.0065	0. 0018	± 0.0035	0.0012	± 0.0023	
Hino-machi, SHIGA	0. 7	1. 06	1. 56	0. 018	± 0.0077	0. 017	± 0.0072	0. 0028	± 0.0039	0. 0018	± 0.0025	
Mihara-machi, HYOGO	0. 69	1. 12	1. 4 8	0. 027	± 0.0072	0. 024	± 0.0064	0	± 0.0041	0	± 0.0028	
Ouda-machi, NARA	0. 73	1. 13	1. 5	0. 026	± 0.0075	0. 023	± 0.0066	0	± 0.0043	0	± 0.0029	
Takase-machi, KAGAWA	0. 69	1. 06	1. 49	0. 011	± 0.0074	0. 011	± 0.0069	0.014	± 0.0066	0.0092	± 0.0044	
kawauchi-machi, EHI M E	0. 69	1. 08	1. 49	0. 027	± 0.0073	0. 025	± 0.0067	0. 0055	± 0.0046	0.0037	± 0.0031	
Koshi-machi, KUMAM0T0	0. 7	1. 08	1. 54	0. 016	± 0.0079	0. 015	± 0.0073	0.004	± 0.0058	0. 0026	± 0.0037	
Kuju-machi, OITA	0. 71	1. 09	1. 54	0. 023	± 0.009	0. 021	± 0.0082	0.074	± 0.01	0. 048	± 0.0065	
Takahara-machi, MIYAZAKI	0. 72	1. 08	1. 6	0. 019	± 0.0088	0. 018	± 0.0082	0. 035	± 0.008	0. 022	± 0.005	

(3)-2 Strontium-90 and Cesium-137 in Milk(producing districts for WHO proguram) (form Apr. 1999 to Sep. 1999)

Table (3)-2 : Strontium-90 and Cesium-137 in Milk(producing districts for WHO proguram)

Location	Component				90	Sr		137Cs				
*****	A sh (%)	Ca (g/kg)	K(g/kg)	(E	Bq/kgwet)	(Вс	(Bq/g Ca)		kgwet)	(Bq/g	(K)	
May, 1999		ver 14 v. 4			<u> </u>							
Hokudainojo, HOKKA1DO	0. 75	1. 28	1. 68	0.04	± 0.0086	0. 031	± 0.0067	0. 048	± 0.0069	0. 029	± 0.0041	
lwamuro-mura, NIIGATA	0. 75	1. 15	1. 63	0. 029	± 0.0078	0. 025	± 0.0067	0. 011	± 0.0044	0. 0065	± 0.0027	
Katsuyama, FUKU I	0. 73	1. 07	1. 56	0. 01	± 0.006	0.0097	± 0.0056	0. 012	± 0.0044	0. 0075	± 0.0028	
Shijonawate, OSAKA	0. 72	1. 15	1. 37	0. 024	± 0.0071	0. 021	± 0.0062	0. 0067	± 0.004	0.0049	± 0.0029	
Matsue, SHIMANE	0. 74	1. 18	1. 48	0.0084	± 0.0052	0. 0071	± 0.0044	0.0029	± 0.0036	0. 002	± 0.0025	
Chiyoda-machi, HIROSHIMA	0. 69	1. 04	1. 48	0. 023	± 0.0058	0. 022	± 0.0055	0. 0035	± 0.0038	0.0024	± 0.0026	
Kochi, KOCHI	0. 74	1. 19	1. 58	0. 037	± 0.0081	0. 031	± 0.0068	0.0099	± 0.0043	0.0063	± 0.0027	
Yasu-machi, FUKUOKA	0. 72	1. 12	1. 51	0. 016	± 0.0075	0. 015	± 0.0067	0.003	± 0.0043	0. 002	± 0.0028	
Kajiki-machi, KAGOSHIMA Aug, 1999	0. 74	1. 13	1. 57	0. 022	± 0.0067	0. 019	± 0.006	0. 015	± 0.0047	0. 0099	± 0.003	
Hokudainojo, HOKKAIDO	0. 72	1. 15	1. 67	0. 051	± 0.0083	0. 044	± 0.0073	0. 039	± 0.0062	0. 023	± 0.0037	
Hachijo-machi, TOKYO	0. 7	1	1. 32	0. 035	± 0.0081	0. 035	± 0.0081	0.0008	± 0.0063	0.0006	± 0.0048	
lwamuro-mura, NIIGATA	0. 72	1. 07	1. 47	0. 012	± 0.0071	0. 011	± 0.0066	0.0061	± 0.0044	0. 0042	± 0.003	
Katsuyama, FUKU I	0. 73	1. 1	1. 61	0. 017	± 0.0054	0.016	± 0.0049	0. 0074	± 0.0043	0. 0046	± 0.0027	
Shi jonawate, OSAKA	0. 74	1. 2	1. 42	0. 026	± 0.0066	0. 022	± 0.0055	0. 01	± 0.0048	0. 0072	± 0.0034	
Matsue, SHIMANE	0. 73	1. 13	1. 52	0. 016	± 0.0067	0.014	± 0.0059	0. 0017	± 0.0045	0. 0011	± 0.003	
Chiyoda-machi, HIROSHIMA	0. 7	1. 07	1. 5	0. 013	± 0.0056	0. 012	± 0.0052	0. 017	± 0.0048	0.012	± 0.0032	
Kochi, KOCHI	0. 74	1. 12	1. 6	0. 024	± 0.0081	0. 022	± 0.0072	0. 012	± 0.0059	0. 0072	± 0.0037	
Yasu-machi, FUKUOKA	0.7	1. 11	1. 44	0. 03	± 0.0086	0. 027	± 0.0078	0. 0067	± 0.0045	0. 0047	± 0.0031	
Kajiki-machi, KAGOSHIMA	0. 74	1. 14	1. 56	0. 014	± 0.0061	0. 013	± 0.0053	0. 011	± 0.0043	0. 0074	± 0.0027	

(3)-3 Strontium-90 and Cesium-137 in Milk (consuming districts) (form Apr. 1999 to Sep. 1999)

-continued from No. 129 for this publication-

Table (3)-3 Strontium-90 and Cesium-137 in Milk(consuming districts)

Location	Location Component				90	Sr		137Cs					
	Ash (%)	Ca (g/kg)	K(g/kg)	(Bq/kgwet)	(B	q/g Ca)	(Bq,	/kgwet)	(Bq/g	; K)		
Jun, 1999			••			to the a deballment demandation or .							
Rifu-machi, MIYAGI	0. 75	1. 12	1, 55	0. 026	± 0.0068	0. 023	± 0.0061	0. 022	± 0.0054	0.014	± 0.0035		
Fukushima, FUKUSHIMA	0. 74	1. 15	1. 59	0. 012	± 0.0063	0. 01	± 0.0054	0. 017	± 0.0049	0. 011	± 0.0031		
Kyoto, KYOTO	0. 72	1. 08	1. 41	0. 027	± 0.0078	0. 025	± 0.0072	0. 019	± 0.0052	0.014	± 0.0037		
Aug, 1999													
Sapporo, HOKKAIDO	0. 71	1. 14	1. 42	0. 045	± 0.01	0. 04	± 0.0089	0. 047	± 0.0087	0. 033	± 0.0061		
Akita, AKITA	0. 77	1. 19	1. 48	0. 042	± 0.01	0. 036	± 0.0084	0.016	± 0.0066	0. 011	± 0.0045		
Yamagata, YAMAGATA	0. 7	1.08	1. 47	0. 034	± 0.0079	0. 032	± 0.0073	0.0098	± 0.0069	0. 0067	± 0.0047		
Urawa, SAITAMA	0. 72	. 1, 11	1. 46	0.043	± 0.0089	0. 039	± 0.008	0. 021	± 0.0073	0. 015	± 0.005		
Shinjuku, TOKYO	0. 68	1. 17	1. 63	0. 023	± 0.0071	0. 02	± 0.0061	0. 024	± 0.0074	0. 015	± 0.0046		
Yokohama, KANAGAWA	0. 72	1. 1	1. 55	0. 027	± 0.0073	0. 024	± 0.0066	0. 038	± 0.007	0. 025	± 0.0046		
Niigata, NIIGATA	0. 74	- 1.1	1. 58	0. 03	± 0.008	0. 027	± 0.0072	0. 032	± 0.0059	0. 02	± 0.0037		
Fukui, FUKUI	0. 71	1. 12	1.6	0. 026	± 0.0062	0. 023	± 0.0056	0.019	± 0.005	0.012	± 0.0031		
Shizuoka, SHIZUOKA	0. 7	1. 07	1. 45	0. 023	± 0.0077	0. 022	± 0.0073	0. 035	± 0.0074	0. 024	± 0.0051		
Nagoya, AICHI	0. 73	1. 11	1. 56	0. 026	± 0.0076	0. 024	± 0.0068	0. 005	± 0.004	0.0032	± 0.0026		
Osaka, OSAKA	0. 72	1. 07	1. 53	0. 018	± 0.006	0. 017	± 0.0056	0. 012	± 0.0048	0. 0076	± 0.0032		
Shingu, WAKAYAMA	0. 68	1.04	1. 45	0. 018	± 0.0065	0. 017	± 0.0062	0. 0057	± 0.005	0.0039	± 0.0035		
Yonago, TOTTORI	0. 7	1. 07	1.46	0. 038	± 0.0083	0. 035	± 0.0078	0. 0085	± 0.0049	0. 0058	± 0.0034		
Matsue, SHIMANE	0. 73	1. 1	1. 51	0. 024	± 0.0069	0. 021	± 0.0062	0. 0015	± 0.004	0. 001	± 0.0026		
Okayama, OKAYAMA	0. 69	, 1.07	1. 48	0.032	± 0.0075	0. 03	± 0.007	0. 0097	± 0.0047	0. 0065	± 0.0032		
Hiroshima, HIROSHIMA	0. 67	1. 03	1. 41	0. 027	± 0.007	0. 026	± 0.0068	0.014	± 0.0049	0. 01	± 0.0035		
Yamaguchi, YAMAGUCHI	0. 68	1. 08	1. 43	0. 029	± 0.0088	0. 027	± 0.0082	0. 0086	± 0.0059	0. 006	± 0.0041		

Location		Component			90)Sr		137Cs				
	A sh (%)	Ca (g/kg)	K(g/kg)	((Bq/kgwet)	(B	q/g Ca)	(Bq,	/kgwet)	(Bq/g	; K)	
kawauchi-machi, EHIME	0. 68	1. 05	1. 46	0. 024	± 0.0069	0. 022	± 0.0066	0. 011	± 0.0049	0. 0074	± 0.0034	
Kochi, KOCHI	0. 71	1.1	1. 52	0.017	± 0.0052	0. 015	± 0.0047	0.0043	± 0.0039	0. 0028	± 0.0026	
Chikushino, FUKUOKA	0. 71	1. 08	1. 54	0.018	± 0.0081	0.017	± 0.0075	0. 018	± 0.0068	0. 012	± 0.0044	
Nagasaki, NAGASAKI	0. 67	1. 04	1. 44	0. 029	± 0.009	0. 028	± 0.0087	0. 011	± 0.0064	0.0074	± 0.0045	
Kagoshima, KAGOSHI M A Sep, 1999	0. 73	1. 12	1. 58	0. 03	± 0.0085	0. 026	± 0.0076	0. 021	± 0.0057	0. 013	± 0.0036	
Rifu-machi, MIYAGI	0. 73	1. 08	1. 54	0. 013	± 0.0056	0.012	± 0.0051	0. 017	± 0.0049	0. 011	± 0.0032	
Yonagusuku-machi, OKINAW	A 0. 72	1. 12	1. 56	0. 035	± 0.0094	0. 031	± 0.0084	0. 0075	± 0.0063	0. 0048	± 0.004	

(3)-4 Strontium-90 and Cesium-137 in Milk (powdered milk) (form Apr. 1999 to Sep. 1999)

-continued from No. 129 for this publication-

Table (3)-4 : Strontium-90 and Cesium-137 in Milk (powdered milk)

Location	Component				90)Sr	137Cs						
	(%)	(g∕kg)	(g∕kg)	(1	Bq∕kg)	(Bq∕g Ca)	(Bq∕Kg)	(Bq∕g K)					
Jun, 1999													
Sample C,サンプルC	7. 79	12. 2	18	0. 56	± 0.035	0.046 ± 0.0028	2 ± 0.05	0.11 ± 0.003					
Sample A,サンプルA	7. 85	12. 5	17. 6	0. 34	± 0.028	0.028 ± 0.0022	0.27 ± 0.019	0.015 ± 0.0011					
Sample B,サンプルB	2. 51	3. 46	6. 22	0. 044	± 0.0096	0.013 ± 0.0028	0.068 ± 0.008	0.011 ± 0.0013					
Sample D,サンプルロ	2. 44	3. 59	5. 81	0. 01	± 0.0066	0.0029 ± 0.0018	0.02 ± 0.0051	0.0034 ± 0.00088					
Sample F, サンプルF	2. 5	3. 58	5. 6	0. 033	± 0.0095	0.0092 ± 0.0027	0.15 ± 0.011	0.027 ± 0.002					
Sample E,サンプルE	2. 47	4. 08	5. 56	0. 077	± 0.011	0.019 ± 0.0027	0.09 ± 0.009	0.016 ± 0.0016					

(4)-1 Strontium-90 and Cesium-137 in Vegetables (producing districts) (form Apr. 1999 to Sep. 1999)

Table (4)-1: Strontium-90 and Cesium-137 in Vegetables (producing districts)

Location	Component				90	Sr					1	370s			
	A sh (%)	(g/kg)	(g/kg)	(Bq/	/kgw	ret)	(1	Bq/gC	a)	(Bq	/kg	wet)	(Bq/	kgK	()
May, 1999	<u></u>	- · · · ·												· •••	
Tahara-machi, AICHI	0. 611	0. 147	2. 54	0. 036	±	0.0087	0. 24	± (0. 059	0. 015	±	0.0062	0.0057	±	0. 0024
Tahara-machi, AICHI	1. 48	0. 86	4. 92	0. 072	±	0. 011	0. 084	± (0. 013	0. 023	±	0. 007	0.0046	±	0.0014
Koshi-machi, KUMAMOTO	1. 49	0. 569	6. 03	0. 17	±	0. 016	0. 29	± (0. 028	0. 01	±	0. 0059	0. 0017	±	0. 00097
Jun, 1999															
Koshi-machi, KUMAMOTO	0. 658	0. 195	2. 53	0. 085	±	0. 012	0. 43	± (0. 06	0.0033	±	0. 0054	0. 0013	±	0. 0021
Jul, 1999															
Mutsu, AOMORI	0. 806	0. 029	3. 5	0. 0015	±	0. 006	0. 05	± (0. 21	0. 076	±	0. 01	0. 022	\pm	0.0029
Kumatori-machi, OSAKA	0. 395	0. 158	1. 47	0. 039	±	0. 0092	0. 25	± (0. 058	0. 025	±	0.0069	0. 017	±	0. 0047
Ota, SHIMANE	0. 65	0. 229	2. 4	0. 63	±	0. 028	2. 7	± (0. 12	0. 022	±	0. 0065	0.0093	±	0. 0027
Ota, SHI MAN E	1. 36	2. 24	2. 9	2. 1	±	0. 05	0. 93	± (0. 023	0. 27	±	0.016	0. 092	±	0. 0055
Aug, 1999															
Eniwa, HOKKA I DO	0. 576	0. 164	2. 56	0. 11	±	0. 013	0. 7	± (0. 08	0.016	±	0. 0057	0.0063	±	0. 0022
Eniwa, HOKKAIDO	1. 7	0. 531	7. 67	0. 19	±	0. 017	0. 35	± (0. 032	0. 013	±	0. 0066	0.0016	±	0.00086

(4)-2 Strontium-90 and Cesium-137 in Vegetables (consuming districts) (form Apr. 1999 to Sep. 1999)

-continued from No. 129 for this publication-

Table (4)-2: Strontium-90 and Cesium-137 in Vegetables (consuming districts)

Location	Component					90Sr				1370s					
	Ash (%)	(g/kg)	(g/kg)	(B	q/kg	gwet)		(Bq/	gCa)	(В	q/k	gwet)	(Bo	Į∕kg	K)
Jun, 1999				-				-					_		
Rifu-machi, MIYAGI	1. 93	0. 699	5. 46	0. 086	±	0. 012	0. 12	±	0. 018	0	±	0. 0053	0	±	0. 00097
Niigata, NIIGATA	1. 02	0. 307	3. 68	0. 028	±	0. 0087	0.09	±	0. 028	0. 0028	±	0. 004	0. 0007	±	0.0011
Sep, 1999															
Rifu-machi, MIYAGI	0. 55	0. 238	2. 15	0. 06	±	0. 011	0. 25	±	0. 046	0. 053	±	0. 0074	0. 025	±	0. 0035
Urawa, SAITAMA	0. 593	0. 18	2. 57	0. 2	±	0.018	1.1	±	0. 1	0. 041	±	0. 0069	0. 016	±	0. 0027
Kanazawa, ISHIKAWA	0. 597	0. 242	2. 48	0	±	0. 0058	0	±	0. 024	0	\pm	0. 0056	0	±	0. 0023
Urawa, SAITAMA	1. 74	0. 364	7. 88	0. 11	±	0.014	0. 31	±	0. 04	0.0069	±	0. 0047	0. 00087	' ±	0.0006
Kanazawa, ISHIKAWA	1. 7	0. 375	6. 98	0. 12	±	0.015	0. 33	±	0. 041	0. 025	±	0. 006	0. 0035	±	0.00086

(5) Strontium-90 and Cesium-137 in Tea (Japanese Tea) (form Apr. 1999 to Sep. 1999) -continued from No. 129 for this publication-

Table (5) : Strontium-90 and Cesium-137 in Tea (Japanese Tea)

Location	Component			90Sr							1	37Cs		
(%)	(g∕kg)	(g∕kg)	(B	q/k	(g)	(Bq.	/g Ca)	(Вс	q∕k	g)	(Bq,	/g	K)
Apr, 1999												and the state of t		
Kawaminami-machi, MIYAZAKI	5. 15	1. 91	21.4	0. 17	±	0. 037	0. 092	± 0.02	1. 3	±	0. 07	0. 059	±	0. 0033
Miyakonojo, MIYAZAKI	5. 86	2. 87	28. 4	0. 18	±	0. 038	0. 062	± 0.013	1. 1	±	0. 07	0. 04	±	0. 0025
May, 1999														
lkeda-machi, GIFU	4. 97	3. 3	21.6	0. 89	±	0. 067	0. 27	± 0.02	0. 12	±	0. 028	0. 0056	±	0. 0013
Shirakawa-machi,GIFU	4. 93	2. 4	20. 8	0. 23	±	0. 04	0. 098	± 0.017	0. 18	±	0. 032	0. 0087	±	0. 0015
lwata, SHIZUOKA	1. 3	0. 65	5. 7	0. 063	±	0. 01	0. 097	± 0.016	0. 012	±	0. 0062	0. 0021	±	0. 0011
Shuzenji-machi, SHIZUOKA	1. 36	0. 855	4. 98	0. 83	±	0. 033	0. 97	± 0.038	0. 18	±	0. 013	0. 036	±	0. 0027
Kameyama, MIE	5. 31	2. 91	23 . 1	1	±	0. 07	0. 36	± 0.025	0. 25	±	0. 034	0. 011	±	0. 0015
Odai-machi, MIE	5. 1	1. 97	19. 7	0. 085	±	0. 027	0.043	± 0.013	0. 21	±	0. 031	0. 011	±	0.0016
Kaya-machi, KYOTO	4. 93	2. 37	18. 1	0. 27	±	0. 039	0. 11	± 0.017	0. 45	±	0. 039	0. 025	±	0. 0021
Nara, NARA	5. 2	2. 89	23. 9	0. 49	±	0. 056	0. 17	± 0.02	0.14	±	0. 033	0.006	±	0.0014
Nara, NARA	5. 18	2. 88	23. 2	0. 37	±	0.049	0.13	± 0.017	0. 38	±	0. 045	0.016	±	0. 002
Nachikatsuura-machi, WAKAYAN		2. 54	20. 1	1. 1	±	0. 09	0. 45	± 0.033	0. 82	±	0. 058	0. 041	±	0. 0029
Mifune-machi, KUMAMOTO	4. 8	2. 57	22 . 1	0. 24	±	0. 039	0.093	± 0.015	0. 062	±	0. 023	0. 0028	±	0. 001
Ue-mura, KUMAMOTO	4. 86	2. 97	19. 5	0. 47	±	0. 051	0. 16	± 0.017	0. 15	±	0. 031	0.0076	±	0.0016
Jun, 1999	••	2												
Tokorozawa, SAITAMA	5. 24	2. 95	21. 9	0. 47	±	0. 052	0. 16	± 0.018	0. 42	±	0.043	0. 019	±	0. 002
Iruma, SAITAMA	5. 22	2. 7	22. 7	0. 38	±	0. 047	0.14	± 0.017	0. 38	±	0. 041	0. 017	±	0.0018
Uji, KYOTO	5. 15	2. 79	18. 8	0.8	±	0.069	0. 29	± 0.025	0. 025	±	0.016	0.0013	±	0. 00087
Chiran-machi, KAGOSHIMA	5. 28	2. 42	20. 3	0. 33	±	0. 047	0. 13	± 0.019	1. 2	±	0. 07	0. 059	±	0.0034
Miyanojo-machi, KAGOSHI	5. 4	2. 42	22. 6	0. 35	±	0. 05	0. 14	± 0.021	0. 45	±	0. 045	0. 02	±	0. 002

(6) Strontium-90 and Cesium-137 in Sea Fish
(form Apr. 1999 to Sep. 1999)
-continued from No. 129 for this publication-

Table (6) : Strontium-90 and Cesium-137 in Sea Fish

Location		Component			908	Sr .			1	37Cs	
	(%)	(g/kgwet)	(g/kgwet)	(Bq/	kgwet)	(Вс	η∕gCa)	(Вс	/kgwet)	(Bq/	/gK)
(Ammodytes personatus)											
Apr, 1999											
Harimanada, HYOGO	2. 27	2. 84	3. 89	0	± 0.0038	0	± 0.0013	0. 095	± 0.0097	0. 024	± 0.0025
(Katsuwonus pelamis) Jun, 1999 Tosa, KOCHI	1. 3	0. 059	4. 25	0. 0082	± 0.0053	0. 14	± 0.091	0. 24	± 0.014	0. 057	± 0.0033
(Limanda herzensteini)	1. 3	0. 033	4. 23	0. 0002	_ 0.000	0. 1 1	_ 0.001	0. 24	± 0.014	0.007	± 0.0000
Jun, 1999 Rifu-machi, MIYAGI (Mugil cephalus)	3. 06	7. 05	3. 49	0. 031	± 0.0076	0. 0044	± 0.0011	0. 044	± 0.0069	0. 013	± 0.002
Aug, 1999 Morodomi-machi, SAGA	1. 13	0. 313	3. 28	0	± 0.0066	0	± 0.021	0. 067	± 0.0083	0. 02	± 0.0025
(Oncorhynchus keta) Sep, 1999 Urakawa-machi, HOKKAIDO	1. 26	0. 507	3. 64	0. 013	± 0.006	0. 026	± 0.012	0. 086	± 0.0091	0. 024	± 0.0025
(Pagrus sp) May, 1999 Kumanonada, MIE	1. 46	0. 26	4. 94	0. 006	± 0.0054	0. 023	± 0.021	0. 21	± 0.013	0. 042	± 0.0026
Jul, 1999 Fukuoka, F UKUOKA	1. 33	0. 392	4. 94	0. 0018	± 0.0054	0. 005	± 0.014	0. 15	± 0.013	0. 033	± 0.0025

Location		Component			908	ir	100 400 100		1	137 C s	
	(%)	(g/kgwet)	(g/kgwet)	(Bq/kgwet)		(Bo	q/gCa)	(Bo	q/kgwet)	(Bq/	gK)
Aug, 1999 Oga, AKITA (Sandinana malanastiatus)	1. 39	1. 76	3. 16	0. 0018	± 0.0054	0. 001	± 0.0031	0. 081	± 0.0087	0. 026	± 0.0028
(Sardinops melanostictus) Sep, 1999 Yamagata, YAMAGATA (Scomber japonicus)	2. 63	5. 24	2. 64	0. 022	± 0.0076	0. 0042	± 0.0015	0. 044	± 0.007	0. 016	± 0.0026
Aug, 1999 I yonada, EHIME	1. 32	0. 877	3. 69	0	± 0.005	0	± 0.0057	0. 1	± 0.01	0. 028	± 0.0026
(Sebastiscus marmoratus) May, 1999 Hamada, SHIMANE	6. 29	19. 6	3. 2	0. 03	± 0.0076	0. 0015	± 0.00039	0. 13	± 0.012	0. 042	± 0.0036
(Sillago sp) Jun, 1999 Minamichita-machi, AICHI	3. 68	9. 76	3. 31	0. 0057	± 0.0062	0. 0005	± 0.00064	0. 09	± 0.0097	0. 027	± 0.0029

Sea Fish

Japanese name	English name	Scientific name
Bora	Gray mullet	Mugil cephalus
	Japanese sand lance	Ammodytes personatus
_	Scorpion-fish	Sebastiscus marmoratus
-	Skipjack tuna	Katsuwonus pelamis
	Whiting	Sillago sp
	Brown sole	Limanda herzensteini
•	Japanese pilchard	Sardinops melanostictus
	Pacific mackerel	Scomber japonicus
	Chum Salmon	Oncorhynchus keta
Tai	Sea bream	Pagrus so
Ikanago Kasago Katsuo Kisu Magarei Maiwashi Masaba Sake	Japanese sand lance Scorpion-fish Skipjack tuna Whiting Brown sole Japanese pilchard Pacific mackerel Chum Salmon	Ammodytes personatu Sebastiscus marmorat Katsuwonus pelamis Sillago sp Limanda herzensteini Sardinops melanostict Scomber japonicus Oncorhynchus keta

(7) Strontium-90 and Cesium-137 in Freshwater Fish (form Apr. 1999 to Sep. 1999)

-continued from No. $\,$ 129 $\,$ for this publication-

Table (7) : Strontium-90 and Cesium-137 in Freshwater Fish

Location	Component					908	Sr			137Cs					
	(%)	(g∕kgwet)	(g∕kgwet)	(Вс	q∕kgw	ret)	((Bq∕	'gCa)	(Bq/	kgwet)	(B	q⁄g	K)
(Carassius auratus)				-						and the second s		Manager of the control of the contro			
Jul, 1999 Barato-lake, HOKKAIDO	4. 72	13. 8	2. 71	0. 63	± (0. 027	0. 046	±	0. 002	0. 051	±	0. 0072	0. 019	±	0. 0027
(Cyprinus carpio)															
May, 1999 Kasumigaura-lake, IBARAKI	1. 11	0. 209	3. 69	0. 012	± (0. 0059	0. 058	±	0. 028	0. 27	±	0. 015	0. 072	±	0. 004
Aug, 1999 Akita, AKITA	3. 07	8. 48	2. 76	1. 6	± (0. 04	0. 19	±	0. 005	0. 17	±	0. 012	0. 06	±	0. 0044
(Salvelinus leucomaeni															
Sep, 1999 Fukushima, FUKUSHI M A	1. 29	0. 583	3. 81	0. 0036	± (0. 0061	0.006	±	0. 011	0. 17	±	0. 012	0. 044	±	0. 0032

Freshwater Fish

Japanese name	English name	Scientific name
Funa	Crucian carp	Carassius auratus
Iwana		Salvelinus leucomaenis
Koi	Carp	Cyprinus carpio

(8) Strontium-90 and Cesium-137 in Shellfish (form Apr. 1999 to Sep. 1999)

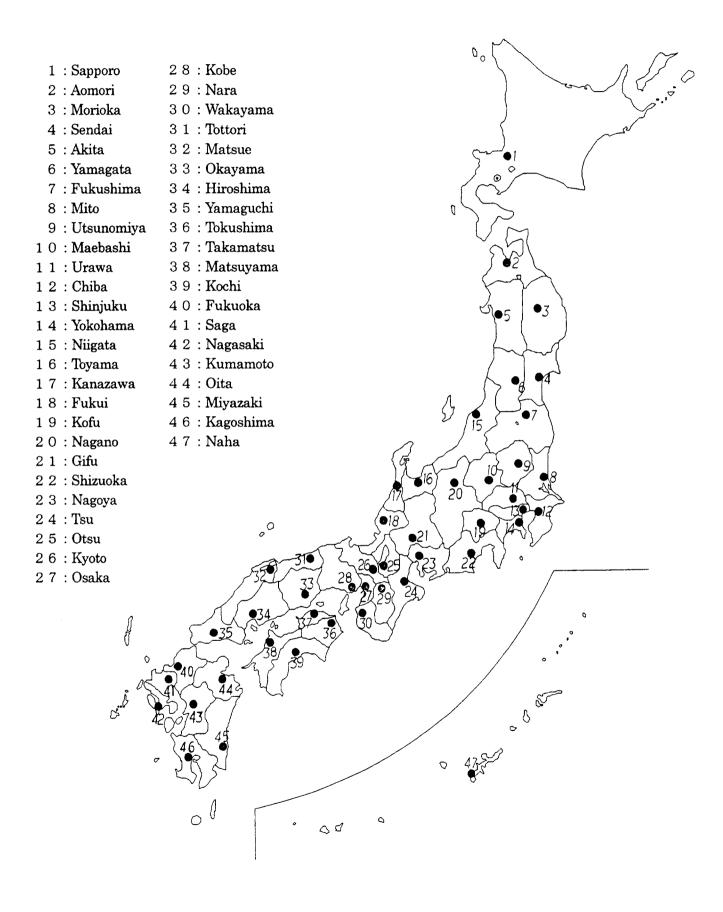
Table (8) : Strontium-90 and Cesium-137 in Shellfish

Location		Component			908	Sr .					
	(%)	(g/kgwet)	(g/kgwet)	(Bq/	kgwet)	(Во	y/gCa)	(Bq	/kgwet)	(Bq/	gK)
(Mytilus edulis)											
Jun, 1999				0		0		0.014	. 0 0040	0 0005	
Mutsu, AOMORI	2. 54	0. 609	1. 7	0	± 0.0053	U	± 0.0086	0. 014	± 0.0049	0. 0085	± 0.0029
(Ruditapes phillipinarum)											
May, 1999											
Konagai-machi, NAGASAKI	2. 07	0. 792	1. 77	0. 0041	± 0.005	0. 0051	± 0.0063	0.014	± 0.005	0.008	± 0.0028
Jun, 1999											
Minamichita-machi, AICHI	1. 99	0. 717	3. 73	0. 002	± 0.015	0. 002	± 0.021	0. 034	± 0.014	0. 0092	± 0.0037
(Turbo cornutus)											
May, 1999											
Ryotsu, NI I GATA	2. 53	0. 731	2. 19	0.006	± 0.0089	0.008	± 0.012	0. 02	± 0.0084	0.0093	± 0.0038
Monzen-machi, ISHIKAWA	3. 54	2. 7	2. 98	0. 013	± 0.0072	0. 0049	± 0.0027	0. 028	± 0.0063	0. 0095	± 0.0021
Jul, 1999											
Sakata, YAMAGATA	2. 58	1. 18	2. 72	0. 013	± 0.0067	0. 011	± 0.0057	0. 026	± 0.0061	0. 0096	± 0.0022

Shellfish

Japanese nameEnglish nameScientific nameAsariJapanese littleneckRuditapes phillioinarumMurasakiigaiCommon blue musselMytilus edulisSazaeHorned turbanTurbo cornutus

(9) Strontium-90 and Cesium-137 in Seaweeds
 (form Apr. 1999 to Sep. 1999)
 -continued from No. 129 for this publication-


Table (9) : Strontium-90 and Cesium-137 in Seaweeds

Location	Component				90Sr					137Cs					
	(%)	(g/kgwet)	(g/kgwet)	(Bq	ı/kg	wet)		(Bq/	gCa)	(E	3q/k	gwet)	(Bq	ı∕gK)
(Undaria pinnatifida)	•														
Apr, 1999 Monzen-machi, ISHIKAWA	4. 09	0. 883	6. 75	0. 013	±	0. 0062	0. 014	±	0. 007	0. 013	±	0. 0052	0. 002	±	0. 00076
May, 1999 Fukaura-machi, AOMORI	2. 17	0. 723	5. 37	0. 0054	±	0. 0073	0. 007	±	0. 01	0. 011	±	0. 0064	0. 0021	±	0. 0012
Mutsu, AOMORI	3. 01	0. 786	6. 92	0.016	±	0.0082	0. 02	±	0. 01	0. 032	±	0.008	0. 0046	±	0. 0012
Ryotsu, NIIGATA	8. 44	2. 34	20. 7	0. 076	±	0. 052	0. 033	±	0. 022	0. 12	±	0. 045	0.006	±	0. 0022
Jun, 1999 Sakata, YAMAGATA	2. 27	1. 16	4. 13	0. 031	±	0. 0085	0. 026	±	0. 0073	0. 02	±	0. 0054	0. 0049	±	0. 0013

Seaweeds

Japanese name	English name	Scientific name	
Wakame	Wakame seaweed	Undaria pinnatifida	

Sampling Locations in Japan

